Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.355
Filtrar
1.
Discov Oncol ; 15(1): 118, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613736

RESUMO

INTRODUCTION: Surgery for gliomas involving eloquent areas is a very challenging microsurgical procedure. Maximizing both the extent of resection (EOR) and preservation of neurological function have always been the focus of attention. Intraoperative neurophysiological monitoring (IONM) is widely used in this kind of surgery. The purpose of this study was to evaluate the efficacy of IONM in eloquent area glioma surgery. METHODS: Sixty-eight glioma patients who underwent surgical treatment from 2014 to 2019 were included in this retrospective cohort study, which focused on eloquent areas. Clinical indicators and IONM data were analysed preoperatively, two weeks after surgery, and at the final follow-up. Logistic regression, Cox regression, and Kaplan‒Meier analyses were performed, and nomograms were then established for predicting prognosis. The diagnostic value of the IONM indicator was evaluated by the receiver operating characteristic (ROC) curve. RESULTS: IONM had no effect on the postoperative outcomes, including EOR, intraoperative bleeding volume, duration of surgery, length of hospital stay, and neurological function status. However, at the three-month follow-up, the percentage of patients who had deteriorated function in the monitored group was significantly lower than that in the unmonitored group (23.3% vs. 52.6%; P < 0.05). Logistic regression analysis showed that IONM was a significant factor in long-term neurological function (OR = 0.23, 95% CI (0.07-0.70). In the survival analysis, long-term neurological deterioration indicated worsened overall survival (OS) and progression-free survival (PFS). A prognostic nomogram was established through Cox regression model analysis, which could predict the probability 3-year survival rate. The concordance index was 0.761 (95% CI 0.734-0.788). The sensitivity and specificity of IONM evoked potential (SSEP and TCeMEP) were 0.875 and 0.909, respectively. In the ROC curve analysis, the area under the curve (AUC) for the SSEP and TCeMEP curves was 0.892 (P < 0.05). CONCLUSIONS: The application of IONM could improve long-term neurological function, which is closely related to prognosis and can be used as an independent prognostic factor. IONM is practical and widely available for predicting postoperative functional deficits in patients with eloquent area glioma.

2.
Carbohydr Polym ; 335: 122082, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38616100

RESUMO

The preparation of cellulose nanofiber (CNF) using traditional methods is currently facing challenges due to concerns regarding environmental pollution and safety. Herein, a novel CNF was obtained from bamboo shoot shell (BSS) by low-concentration acid and dynamic high-pressure microfluidization (DHPM) treatment. The resulting CNF was then characterized, followed by in vitro and in vivo safety assessments. Compared to insoluble dietary fiber (IDF), the diameters of HIDF (IDF after low-concentration acid hydrolysis) and CNF were significantly decreased to 167.13 nm and 70.97 nm, respectively. Meanwhile, HIDF and CNF showed a higher crystallinity index (71.32 % and 74.35 %). Structural analysis results indicated the successful removal of lignin and hemicellulose of HIDF and CNF, with CNF demonstrating improved thermostability. In vitro, a high dose of CNF (1500 µg/mL) did not show any signs of cytotoxicity on Caco-2 cells. In vivo, no death was observed in the experimental mice, and there was no significant difference between CNF (1000 mg/kg·bw) and control group in hematological index and histopathological analysis. Overall, this study presents an environmentally friendly method for preparing CNF from BSS while providing evidence regarding its safety through in vitro and in vivo assessments, laying the foundation for its potential application in food.


Assuntos
Celulose , Nanofibras , Animais , Camundongos , Humanos , Celulose/toxicidade , Células CACO-2 , Nanofibras/toxicidade , Verduras , Lignina
3.
Int J Med Sci ; 21(5): 809-816, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617011

RESUMO

This comprehensive review delves into the pivotal role of mitochondria in doxorubicin-induced cardiotoxicity, a significant complication limiting the clinical use of this potent anthracycline chemotherapeutic agent. Doxorubicin, while effective against various malignancies, is associated with dose-dependent cardiotoxicity, potentially leading to irreversible cardiac damage. The review meticulously dissects the molecular mechanisms underpinning this cardiotoxicity, particularly focusing on mitochondrial dysfunction, a central player in this adverse effect. Central to the discussion is the concept of mitochondrial quality control (MQC), including mitochondrial dynamics (fusion/fission balance) and mitophagy. The review presents evidence linking aberrations in these processes to cardiotoxicity in doxorubicin-treated patients. It elucidates how doxorubicin disrupts mitochondrial dynamics, leading to an imbalance between mitochondrial fission and fusion, and impairs mitophagy, culminating in the accumulation of dysfunctional mitochondria and subsequent cardiac cell damage. Furthermore, the review explores emerging therapeutic strategies targeting mitochondrial dysfunction. It highlights the potential of modulating mitochondrial dynamics and enhancing mitophagy to mitigate doxorubicin-induced cardiac damage. These strategies include pharmacological interventions with mitochondrial fission inhibitors, fusion promoters, and agents that modulate mitophagy. The review underscores the promising results from preclinical studies while advocating for more extensive clinical trials to validate these approaches in human patients. In conclusion, this review offers valuable insights into the intricate relationship between mitochondrial dysfunction and doxorubicin-mediated cardiotoxicity. It underscores the need for continued research into targeted mitochondrial therapies as a means to improve the cardiac safety profile of doxorubicin, thereby enhancing the overall treatment outcomes for cancer patients.


Assuntos
Cardiotoxicidade , Doenças Mitocondriais , Humanos , Cardiotoxicidade/etiologia , Doxorrubicina/efeitos adversos , Mitocôndrias , Antraciclinas
4.
EClinicalMedicine ; 71: 102579, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38618203

RESUMO

Background: In resectable oesophageal squamous cell carcinoma (ESCC), the efficacy of camrelizumab combined with chemotherapy and apatinib followed by minimally invasive oesophagectomy is not clear. We aimed to fill this knowledge gap. Methods: This investigator-initiated, single-arm, prospective, phase 2 trial was performed at the Second Affiliated Hospital of Zhejiang University, China. Patients (aged 18-75 years) who were histologically or cytologically diagnosed with ESCC were deemed suitable to participate in this trial. Patients received 2-3 cycles of neoadjuvant therapy with camrelizumab, nedaplatin, albumin paclitaxel, and apatinib; each cycle was repeated every 14 days. Surgery occurred 4-6 weeks after the last neoadjuvant treatment cycle. The primary outcome was the pathological complete response (PCR) rate of the tumour and lymph nodes. The changes in the peripheral blood immunoprofile among patients without PCR (ie, non-PCR [NPCR]) and with PCR were assessed by mass cytometry. This study was registered with ClinicalTrials.gov, NCT04666090. Findings: 42 patients were enrolled between November 23, 2020 and December 31, 2022. The disease control rate was 100.0% (95% CI, 91.6-100%), and the objective response rate was 83.3% (95% CI, 68.6-93.0%). Six (14.3%) patients experienced grade 3 adverse events. The most common were white blood cell count decrease (31.0%), alopecia (81.0%), asthenia (38.1%), and reactive cutaneous capillary endothelial proliferation (35.7%). 41 patients received minimally invasive oesophagectomy; all 41patients achieved R0 resection, and 18 (43.9%, 95% CI, 28.5-60.3%) patients achieved PCR. The median follow-up was 23 months and the 2-year survival rate was 85.9%. T-cell subsets in both the PCR and NPCR groups exhibited consistency in response to neoadjuvant therapy. In contrast, some of natural killer (NK) cells (NK-C03, NK-C11), B cells (B-C06) and monocytes (M-C05), exhibited significant differences between the PCR and NPCR groups before neoadjuvant therapy. M-C06 had a significant difference in the PCR group and NPCR group after neoadjuvant therapy. NK-C12 and B-C15 showed significant differences both before and after neoadjuvant therapy. Interpretation: The application of camrelizumab, chemotherapy and apatinib in the neoadjuvant setting for locally advanced ESCC has shown promising antitumour activity and an acceptable safety profile in this single-arm study. In the neoadjuvant setting, NK cell, B cell, and monocyte subsets exhibited greater predictive power for immunotherapy responsiveness than T-cell subsets. Longer follow-up to assess survival outcomes and a phase 3 randomised trial are needed to further evaluate the proposed treatment. Funding: The China Anti-Cancer Association and the "Leading Goose" Research and Development Project of Zhejiang Province.

5.
Angew Chem Int Ed Engl ; : e202405173, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622784

RESUMO

Constructing amorphous/intermetallic (A/IMC) heterophase structures by breaking the highly ordered IMC phase with disordered amorphous phase is an effective way to improve the electrocatalytic performance of noble metal-based IMC electrocatalysts because of the optimized electronic structure and abundant heterophase boundaries as active sites. In this study, we report the synthesis of ultrathin A/IMC PtPbBi nanosheets (NSs) for boosting hydrogen evolution reaction (HER) and alcohol oxidation reactions. The resulting A/IMC PtPbBi NSs exhibit a remarkably low overpotential of only 25 mV at 10 mA cm-2 for the HER in an acidic electrolyte, together with outstanding stability for 100 h. In addition, the PtPbBi NSs show high mass activities for methanol oxidation reaction (MOR) and ethanol oxidation reaction (EOR), which are 13.2 and 14.5 times higher than those of commercial Pt/C, respectively. Density functional theory calculations demonstrate that the synergistic effect of amorphous/intermetallic components and multimetallic composition facilitate the electron transfer from the catalyst to key intermediates, thus improving the catalytic activity of MOR. This work establishes a novel pathway for the synthesis of heterophase two-dimensional nanomaterials with high electrocatalytic performance across a wide range of electrochemical applications.

6.
Inflamm Res ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625657

RESUMO

OBJECTIVES AND DESIGN: As an interferon-inducible protein, Viperin has broad-spectrum antiviral effects and regulation of host immune responses. We aim to investigate how Viperin regulates interferon-γ (IFN-γ) production in macrophages to control Mycobacterium tuberculosis (Mtb) infection. METHODS: We use Viperin deficient bone-marrow-derived macrophage (BMDM) to investigate the effects and machines of Viperin on Mtb infection. RESULTS: Viperin inhibited IFN-γ production in macrophages and in the lung of mice to promote Mtb survival. Further insight into the mechanisms of Viperin-mediated regulation of IFN-γ production revealed the role of TANK-binding kinase 1 (TBK1), the TAK1-dependent inhibition of NF-kappa B kinase-epsilon (IKKε), and interferon regulatory factor 3 (IRF3). Inhibition of the TBK1-IKKε-IRF3 axis restored IFN-γ production reduced by Viperin knockout in BMDM and suppressed intracellular Mtb survival. Moreover, Viperin deficiency activated the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway, which promoted IFN-γ production and inhibited Mtb infection in BMDM. Additionally, a combination of the anti-TB drug INH treatment in the absence of Viperin resulted in further IFN-γ production and anti-TB effect. CONCLUSIONS: This study highlights the involvement of TBK1-IKKε-IRF3 axis and JAK-STAT signaling pathways in Viperin-suppressed IFN-γ production in Mtb infected macrophages, and identifies a novel mechanism of Viperin on negatively regulating host immune response to Mtb infection.

7.
Adv Mater ; : e2400858, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38631028

RESUMO

Two-dimensional (2D) materials are burgeoning as promising candidates for investigating nonlinear optical effects due to high nonlinear susceptibilities, broadband optical response, and tunable nonlinearity. However, most 2D materials suffer from poor nonlinear conversion efficiencies, resulting from the reduced light-matter interactions and lack of phase matching at atomic thicknesses. Herein, we report a new 2D nonlinear material, niobium oxide dibromide (NbOBr2), featuring strong and anisotropic optical nonlinearities with scalable nonlinear intensity. Furthermore, Fabry-Pérot (F-P) microcavities are constructed by coupling NbOBr2 with air holes in silicon. Remarkable enhancement factors of approximately 630 times in second harmonic generation (SHG) and 210 times in third harmonic generation (THG) are achieved on cavity at the resonance wavelength of 1500 nm. Notably, the cavity enhancement effect exhibits strong anisotropic feature tunable with pump wavelength, owing to the robust optical birefringence of NbOBr2. The ratio of the enhancement factor along the b- and c-axis of NbOBr2 reaches 2.43 and 5.27 for SHG and THG at 1500 nm pump, respectively, which leads to an extraordinarily high SHG anisotropic ratio of 17.82 and a 10° rotation of THG polarization. Our research presents a feasible and practical strategy for developing high-efficiency and low-power-pumped on-chip nonlinear optical devices with tunable anisotropy. This article is protected by copyright. All rights reserved.

8.
Fitoterapia ; : 105965, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38631599

RESUMO

Four new diterpenoids, including three secolathyrane diterpenoids (1-3) and one lathyrane diterpenoid (4), together with seven known diterpenoids, were obtained in the shelled seeds of Euphorbia lathyris. In particular, 1-3 possess a rare split ring structure, and currently only one compound with the same skeleton has been identified in E. lathyris. Compound 4 furnishes an unprecedented oxygen bridge structure. The structures were identified using various spectral techniques, including NMR, HR-ESI-MS, single-crystal X-ray diffraction and calculated electronic circular dichroism (ECD). The biosynthetic pathway of 1-4 was inferred. Furthermore, the cytotoxic activities of all compounds (1-11) were measured on three human tumor cells. New compounds 2 and 3 showed moderate cytotoxic activities against U937 cells with IC50 values of 22.18 and 25.41 µM, respectively.

9.
Gen Comp Endocrinol ; 353: 114513, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38604437

RESUMO

Skeletal muscle, comprising a significant proportion (40 to 50 percent) of total body weight in humans, plays a critical role in maintaining normal physiological conditions. Muscle atrophy occurs when the rate of protein degradation exceeds protein synthesis. Sarcopenia refers to age-related muscle atrophy, while cachexia represents a more complex form of muscle wasting associated with various diseases such as cancer, heart failure, and AIDS. Recent research has highlighted the involvement of signaling pathways, including IGF1-Akt-mTOR, MuRF1-MAFbx, and FOXO, in regulating the delicate balance between muscle protein synthesis and breakdown. Myostatin, a member of the TGF-ß superfamily, negatively regulates muscle growth and promotes muscle atrophy by activating Smad2 and Smad3. It also interacts with other signaling pathways in cachexia and sarcopenia. Inhibition of myostatin has emerged as a promising therapeutic approach for sarcopenia and cachexia. Additionally, other TGF-ß family members, such as TGF-ß1, activin A, and GDF11, have been implicated in the regulation of skeletal muscle mass. Furthermore, myostatin cooperates with these family members to impair muscle differentiation and contribute to muscle loss. This review provides an overview of the significance of myostatin and other TGF-ß signaling pathway members in muscular dystrophy, sarcopenia, and cachexia. It also discusses potential novel therapeutic strategies targeting myostatin and TGF-ß signaling for the treatment of muscle atrophy.

10.
Sci Rep ; 14(1): 8494, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605041

RESUMO

Effective forecasting of energy consumption structure is vital for China to reach its "dual carbon" objective. However, little attention has been paid to existing studies on the holistic nature and internal properties of energy consumption structure. Therefore, this paper incorporates the theory of compositional data into the study of energy consumption structure, which not only takes into account the specificity of the internal features of the structure, but also digs deeper into the relative information. Meanwhile, based on the minimization theory of squares of the Aitchison distance in the compositional data, a combined model based on the three single models, namely the metabolism grey model (MGM), back-propagation neural network (BPNN) model, and autoregressive integrated moving average (ARIMA) model, is structured in this paper. The forecast results of the energy consumption structure in 2023-2040 indicate that the future energy consumption structure of China will evolve towards a more diversified pattern, but the proportion of natural gas and non-fossil energy has yet to meet the policy goals set by the government. This paper not only suggests that compositional data from joint prediction models have a high applicability value in the energy sector, but also has some theoretical significance for adapting and improving the energy consumption structure in China.

11.
Nanomaterials (Basel) ; 14(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38607108

RESUMO

The application of transition metal hydroxides has long been plagued by its poor conductivity and stability as well as severe aggregation tendency. In this paper, a novel hierarchical core-shell architecture, using an F-doped Co(OH)2 nanorod array (Co(OH)F) as the core and Mn/Ni co-doped Co(OH)2 nanosheets (NiCoMn-LDH) as the shell, was constructed via an MOF-mediated in situ generation method. The obtained Co(OH)F@ NiCoMn-LDH composites exhibited excellent supercapacitive performance with large specific capacitance as well as improved rate capability and long-term stability. The effect of the Ni/Mn ratio on the supercapacitive performance and energy storage kinetics was systematically investigated and the related mechanism was revealed.

12.
Cancer Med ; 13(7): e7165, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613157

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide, it has a poor prognosis due to its highly invasive and metastatic nature. Consequently, identifying effective prognostic markers and potential therapeutic targets has been extensively investigated. METTL5, an 18S rRNA methyltransferase, is abnormally high in HCC. But its biological function and prognostic significance in HCC remain largely unelucidated. This study aimed to investigate the role of METTL5 in HCC progression, and elucidate its possible molecular mechanisms in HCC via transcriptome sequencing, providing new insights for identifying new HCC prognostic markers and therapeutic targets. METHODS: The METTL5 expression in HCC and paracancerous tissues was analyzed using HCC immunohistochemical microarrays and bioinformatic retrieval methods to correlate METTL5 with clinicopathological features and survival prognosis. We constructed a METTL5 knockdown hepatocellular carcinoma cell line model and an animal model to determine the effect of METTL5 on hepatocellular carcinoma progression. Subsequently, RNA sequencing was performed to analyze the molecular mechanism of METTL5 in HCC based on the sequencing results, and relevant experiments were performed to verify it. RESULTS: We found that METTL5 expression was elevated in hepatocellular carcinoma tissues and correlated with poor patient prognosis, and in the analysis of clinicopathological features showed a correlation with TNM staging. In hepatocellular carcinoma cell lines with knockdown of METTL5, the malignant biological behavior was significantly reduced both in vitro and in vivo. Based on the sequencing results as well as the results of GO functional enrichment analysis and KEGG pathway enrichment analysis, we found that METTL5 could promote the generation and release of neutrophil extracellular capture network (NETs) and might further accelerate the progression of HCC. CONCLUSION: The m6A methyltransferase METTL5 is overexpressed in hepatocellular carcinoma (HCC) and correlates with poor prognosis. METTL5 accelerates malignant progression of HCC by promoting generation and release of the neutrophil extracellular traps (NETs) network, providing new insights for clinical biomarkers and immunotherapeutic targets in HCC prognosis.


Assuntos
Adenina , Carcinoma Hepatocelular , Armadilhas Extracelulares , Neoplasias Hepáticas , Animais , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Metiltransferases/genética
14.
Plant Cell Environ ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629334

RESUMO

Floral transition, the switch from vegetative to reproductive growth, is extremely important for the growth and development of flowering plants. In the summer chrysanthemum, CmBBX8, a member of the subgroup II B-box (BBX) family, positively regulates the transition by physically interacting with CmERF3 to inhibit CmFTL1 expression. In this study, we show that CmBBX5, a B-box subgroup I member comprising two B-boxes and a CCT domain, interacts with CmBBX8. This interaction suppresses the recruitment of CmBBX8 to the CmFTL1 locus without affecting its transcriptional activation activity. CmBBX5 overexpression led to delayed flowering under both LD (long-day) and SD (short-day) conditions, while lines expressing the chimeric repressor gene-silencing (CmBBX5-SRDX) exhibited the opposite phenotype. Subsequent genetic evidence indicated that in regulating flowering, CmBBX5 is partially dependent on CmBBX8. Moreover, during the vegetative growth period, levels of CmBBX5 expression were found to exceed those of CmBBX8. Collectively, our findings indicate that both CmERF3 and CmBBX5 interact with CmBBX8 to dampen the regulation of CmFTL1 via distinct mechanisms, which contribute to preventing the premature flowering of summer chrysanthemum.

15.
Huan Jing Ke Xue ; 45(5): 2571-2580, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629522

RESUMO

Influenced by heating, the concentration of atmospheric fine particulate matter (PM2.5) rises in autumn and winter in northern cities. In this study, Q-ACSM, AE33, and Xact 625 were used to carry out online monitoring of PM2.5 chemical components with high time resolution in Xi'an from October 25 to November 17, 2019, to analyze the characteristics of PM2.5 pollution during the transition period of the heating season. Additionally, we analyzed the sources of PM2.5 in combination with the positive matrix factorization model. The results showed that the average PM2.5 concentration during the observation period was (78.3 ± 38.5) µg·m-3, and the main chemical components were organic matter (OA), secondary inorganic ions (SIA), and dust, which accounted for 38.7%, 31.6%, and 21.2%, respectively. The average concentrations of sulfate, nitrate, and ammonium were (4.0 ± 3.1), (14.9 ± 13.7), and (5.8 ± 4.8) µg·m-3, and the average concentrations of the major metals potassium, calcium, and iron were (1.0 ± 0.4), (1.5 ± 1.1), and (1.4 ± 0.9) µg·m-3. Black carbon, chloride ions, and trace elements contributed relatively little to PM2.5 (5.7%, 1.3%, and 1.5%, respectively). In the pollution development and maintenance stage, the concentration of OA and SIA increased by 137.7% to 537.0%, whereas in the pollution dissipation stage, only the concentration of dust gradually increased. The source apportionment results showed that secondary sources, biomass burning, dust, vehicle emission, industrial emission, and coal combustion were the main sources of PM2.5 during the observation period, contributing 29.1%, 21.1%, 15.3%, 12.9%, 11.4%, and 10.2%, respectively. The contribution rate of secondary sources and biomass burning was higher in the pollution development and maintenance stage, and dust was higher in the pollution dissipation stage.

16.
J Mater Chem B ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629894

RESUMO

Skin aging, a complex and inevitable biological process, results in wrinkles, dermal laxity, and skin cancer, profoundly influencing appearance and overall health. Collagen serves as the fundamental element of the dermal matrix; nevertheless, collagen is susceptible to enzymatic degradation within the body. Crosslinking is employed to enhance the physicochemical properties of collagen. However, conventional crosslinking agents may harbor potential issues such as cytotoxicity and calcification risks, constraining their application in the biomedical field. Therefore, we have for the first time developed a highly biocompatible CE-crosslinked collagen implant with exceptional anti-calcification and collagen regeneration capabilities for aging skin rejuvenation. A novel collagen crosslinking agent (CE) was synthesized through a reaction involving chitosan quaternary ammonium salt with 1,4-butanediol diglycidyl ether. Compared to collagen crosslinked with glutaraldehyde (GA), the CE-crosslinked collagen implant exhibited notable stability and durability. The implant demonstrated excellent injectability and viscosity, resisting displacement after implantation. Additionally, the CE-crosslinked collagen implant displayed superior biocompatibility, effectively promoting the proliferation and adhesion of HFF-1 cells compared with the GA-crosslinked collagen. The CE-crosslinked collagen represented a safer and more biologically active implant material. In vivo experiments further substantiated that the implant significantly facilitated collagen regeneration without inducing calcification. The innovative collagen implant has made substantial strides in enhancing aesthetics and reducing wrinkles, presenting the potential for revolutionary progress in the fields of skin rejuvenation and collagen regeneration.

17.
Food Funct ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630029

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is the main reason for chronic liver diseases and malignancies. Currently, there is a lack of approved drugs for the prevention or treatment of NAFLD. Vine tea (Ampelopsis grossedentata) has been used as a traditional Chinese beverage for centuries. Vine tea carries out several biological activities including the regulation of plasma lipids and blood glucose, hepato-protective function, and anti-tumor activity and contains the highest content of flavonoids. However, the underlying mechanisms of total flavonoids from vine tea (TF) in the attenuation of NAFLD remain unclear. Therefore, we investigated the interventions and mechanisms of TF in mice with NAFLD using an integrated analysis of network pharmacology, lipidomics, and transcriptomics. Staining and biochemical tests revealed a significant increase in AKT-overexpression-induced (abbreviated as AKT-induced) NAFLD in mice. Lipid accumulation in hepatic intracellular vacuoles was alleviated after TF treatment. In addition, TF reduced the hepatic and serum triglyceride levels in mice with AKT-induced NAFLD. Lipidomics results showed 32 differential lipids in the liver, mainly including triglycerides (TG), diglycerides (DG), phosphatidylcholine (PC), and phosphatidylethanolamine (PE). Transcriptomic analysis revealed that 314 differentially expressed genes were commonly upregulated in the AKT group and downregulated in the TF group. The differential regulation of lipids by the genes Pparg, Scd1, Chpt1, Dgkz, and Pla2g12b was further revealed by network enrichment analysis and confirmed by RT-qPCR. Furthermore, we used immunohistochemistry (IHC) to detect changes in the protein levels of the key proteins PPARγ and SCD1. In summary, TF can improve hepatic steatosis by targeting the PPAR signaling pathway, thereby reducing de novo fatty acid synthesis and modulating the glycerophospholipid metabolism.

18.
Ren Fail ; 46(1): 2334912, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38604971

RESUMO

OBJECTIVE: The relationship between serum total cholesterol (TC) and triglyceride (TG) levels and mortality in maintenance hemodialysis (MHD) patients remains inconsistent. We aimed to explore the individual and combined association of TC and TG levels with the risk of mortality in Chinese MHD patients. METHODS: 1036 MHD patients were enrolled in this multicenter, prospective cohort study. The serum levels of total cholesterol and triglycerides were measured at baseline. The primary outcome was all-cause mortality and secondary outcome was cardiovascular disease (CVD) mortality. RESULTS: During a median follow-up duration of 4.4 years (IQR= 2.0-7.9 years), 549 (53.0%) patients died, and 297 (28.7%) deaths were attributed to CVD. Compared with patients with TC levels in the first three quartiles (<182.5 mg/dL), a significantly higher risk of all-cause mortality was found in participants with TC in the fourth quartile (hazard ratio [HR], 1.43; 95% confidence interval [CI], 1.17-1.76). However, a significantly lower risk of all-cause mortality was observed in participants with TG in the fourth quartile (≥193.9 mg/dL) (HR, 0.78; 95%CI: 0.63-0.98), compared with participants with TG in the first three quartiles. Similar trends were observed in CVD mortality. When analyzed jointly, patients with lower TC (<182.5 mg/dL) and higher TG (≥193.9 mg/dL) levels had the lowest risk of all-cause mortality and CVD mortality.Conclusions: In MHD patients in southern China, higher TC levels were associated with higher risk of mortality, while higher TG levels were related to lower risk of mortality. Patients with lower TC and higher TG levels had the best survival prognosis.


Assuntos
Doenças Cardiovasculares , Diálise Renal , Humanos , Triglicerídeos , Estudos Prospectivos , Colesterol , HDL-Colesterol , Fatores de Risco
19.
Cell Death Dis ; 15(4): 258, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609388

RESUMO

The impairment of the blood-brain barrier (BBB) has been increasingly recognised as a critical element in the early pathogenesis of Alzheimer's disease (AD), prompting a focus on brain endothelial cells (BECs), which serve as the primary constituents of the BBB. Death receptor 6 (DR6) is highly expressed in brain vasculature and acts downstream of the Wnt/ß-catenin pathway to promote BBB formation during development. Here, we found that brain endothelial DR6 levels were significantly reduced in a murine model of AD (APPswe/PS1dE9 mice) at the onset of amyloid-ß (Aß) accumulation. Toxic Aß25-35 oligomer treatment recapitulated the reduced DR6 in cultured BECs. We further showed that suppressing DR6 resulted in BBB malfunction in the presence of Aß25-35 oligomers. In contrast, overexpressing DR6 increased the level of BBB functional proteins through the activation of the Wnt/ß-catenin and JNK pathways. More importantly, DR6 overexpression in BECs was sufficient to rescue BBB dysfunction in vitro. In conclusion, our findings provide new insight into the role of endothelial DR6 in AD pathogenesis, highlighting its potential as a therapeutic target to tackle BBB dysfunction in early-stage AD progression.


Assuntos
Doença de Alzheimer , Barreira Hematoencefálica , Animais , Camundongos , Doença de Alzheimer/genética , Peptídeos beta-Amiloides , beta Catenina , Encéfalo , Células Endoteliais , Receptores do Fator de Necrose Tumoral
20.
Bioconjug Chem ; 35(4): 540-550, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38557019

RESUMO

Ultrasmall Au25(MPA)18 clusters show great potential in biocatalysts and bioimaging due to their well-defined, tunable structure and properties. Hence, in vivo pharmacokinetics and toxicity of Au nanoclusters (Au NCs) are very important for clinical translation, especially at high dosages. Herein, the in vivo hematological, tissue, and neurological effects following exposure to Au NCs (300 and 500 mg kg-1) were investigated, in which the concentration is 10 times higher than in therapeutic use. The biochemical and hematological parameters of the injected Au NCs were within normal limits, even at the ultrahigh level of 500 mg kg-1. Meanwhile, no histopathological changes were observed in the Au NC group, and immunofluorescence staining showed no obvious lesions in the major organs. Furthermore, real-time near-infrared-II (NIR-II) imaging showed that most of the Au25(MPA)18 and Au24Zn1(MPA)18 can be metabolized via the kidney. The results demonstrated that Au NCs exhibit good biosafety by evaluating the manifestation of toxic effects on major organs at ultrahigh doses, providing reliable data for their application in biomedicine.


Assuntos
Ouro , Nanopartículas Metálicas , Ouro/toxicidade , Ouro/química , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...